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1 Introduction

1.1 Context

This document summarizes the research done on the arithmetic of complex random variables during my internship
in the DSB group, Department of Informatics (IFI). This establishes some theoretical background needed for the
implementation of the statistical analysis of complex interval arithmetic in the Complex Interval Arithmetic Toolbox,
in MATLAB (https://github.com/unioslo-mn/ifi-complex-interval-arithmetic). For more context, see
https://perso.eleves.ens-rennes.fr/people/gauvain.thomas/.

The content of is document is almost fully independent by itself, but relates to complex interval arithmetic for
its motivation.

1.2 Related works

• N. O’Donoughue and J. M. F. Moura, ”On the Product of Independent Complex Gaussians,” in IEEE Trans-
actions on Signal Processing, vol. 60, no. 3, pp. 1050-1063, March 2012, doi: 10.1109/TSP.2011.2177264.

• https://handwiki.org/wiki/Product_distribution

• Kurz, Gerhard & Gilitschenski, Igor & Hanebeck, Uwe. (2014). Efficient Evaluation of the Probability Density
Function of a Wrapped Normal Distribution. 10.13140/2.1.3082.2084.

• Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software,
31(10), 1–21. https://doi.org/10.18637/jss.v031.i10

2 Change of coordinates

Let R be a random variable with a probability density function fR(r) and a cumulative distribution function FR(r).
Let Θ be a random variable with a probability density function fΘ(θ) and a cumulative distribution function

FΘ(θ).
Z = RejΘ is a random variable with a probability density function fZ(z) and a cumulative distribution function

FZ(z).
We can compute the cumulative distribution function of Z (as the cumulative distribution function of complex

random variables is defined as via the joint distribution of the real and imaginary parts) :

FZ(z) = P(Re(Z) ≤ Re(z), Im(Z) ≤ Im(z))

And we have :

fZ;x,y(x+ iy) =
∂2FZ;x,y(x+ iy)

∂x∂y

fZ;x,y(x+ iy) =
1

r
fZ;r,θ(

√
x2 + y2, arctan(y/x))
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3 Defining probability distributions on intervals

3.1 Uniform distributions

Complex uniform distributions are already well defined on any kind of set, thus on any complex interval.
Let X be a uniform complex random variable on SX with a probability density function fX(x) = 1

|SX | and Y

be a uniform complex random variable on SY with a probability density function fY (y) =
1

|SY | , with |SX | (resp.
|SY |) the area of SX (resp. SY ).

Then their sum Z = X + Y is defined on the Minkowski sum of the two shapes, which can computed using
Interval Arithmetic (IA) with adapted shapes.

Thus we can compute the pdf of Z as follows :
As we know, the pdf of Z is the convolution of the pdfs of X and Y :

fZ(z) =

∫
SX

fX(x)fY (z − x)dx =

∫
SX

1SX
(x)

|SX |
1SY

(z − x)

|SY |
dx =

1

|SX ||SY |

∫
SX

1SY
(z − x)dx

and
∫
SX

1SY
(z − x)dx exactly corresponds to the area of the intersection of SX and SY translated by z, which

is the backtracked region of Z.

3.2 Normal distributions

Defining complex normal distributions is just a special case of a multivariate normal distribution.
https://en.wikipedia.org/wiki/Complex_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

However, as we consider to define it on a closed bounded area, we need to consider a truncated version of the
distribution, so that its support corresponds with the interval.

https://en.wikipedia.org/wiki/Truncated_normal_distribution

Formally, it’s only a normalization of the probability distribution on the new support.
However, for practical purpose we often use a normal distribution centered in the interval, with bounds further

than three standard deviations, which is very closely approximated by a usual normal distribution.

3.3 Normal-like distributions on radial and angular components

We want to define a complex distribution, which in polar form looks like some kind of normal distribution, along
both of its radial and angular marginal distributions.

We can try to define it first as follow : Z = ReiΘ, where R ∼ N (µR, σ
2
R) and Θ ∼ N (µΘ, σ

2
Θ).

However, we already face several issues with this definition : even though it is well defined,
Thus we want R and Θ such that they really represent the modulus and argument of the complex variable, i.e.

we should have :

|Z| = |R| = R

and

argZ = Θ

where arg z ∈]− π, π]
It confirms the seemingly reasonable assumption that R should be defined only for positive real numbers, and

Θ on ] − π, π]. Moreover, as it represents a circular distribution, it should satisfy fΘ(−π+) = fΘ(π) to ensure
continuity of the angles on a circular representation.

The most suitable candidates for such distributions are :

• A folded normal distribution for R, which is simply the distribution of the absolute value of a normal
distribution

• A wrapped normal distribution, which is, as the name suggests the ”wrapping” of a normal distribution
along the unit circle
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However, the wrapped normal distribution is not tractable, but is fortunately well approximated by either the
von Mises distribution or a normal distribution.

See :
https://en.wikipedia.org/wiki/Folded_normal_distribution

https://en.wikipedia.org/wiki/Circular_distribution

https://en.wikipedia.org/wiki/Wrapped_normal_distribution

https://en.wikipedia.org/wiki/Von_Mises_distribution

4 Transformations of complex random variables

In this section, let X and Y be complex random variables on C, with probability distribution functions fX , fY .

4.1 Addition

Let Z = X + Y , then :

fZ(z) = (fX ∗ fY )(z) =
∫∫

C

fX(t)fY (z − t)dt (1)

4.2 Product

4.2.1 Idea

Let Z = XY
The distribution of the product of two complex random variables can be found by computing the marginal

distributions in polar form, then computing the product distribution in polar form as well :
If X = RXeiΘX and X = RY e

iΘY , then Z = XY = RXRY e
ΘX+ΘY .

We already know how to compute the distribution of the sum of random variables using convolution, and the
product can be computed using an integral (or a logarithmic integral!)

https://en.wikipedia.org/wiki/Distribution_of_the_product_of_two_random_variables

https://en.wikipedia.org/wiki/Algebra_of_random_variables

However this method would require a lot of conversions between Cartesian and polar coordinates, I haven’t
tested if it is worth yet.

Instead, we can use the following identity :

Z = XY = elogX+log Y

Where log is the principal branch of the complex logarithm
https://en.wikipedia.org/wiki/Complex_logarithm.
Note that even if the above identity holds, the following one doesn’t always logXY = logX + log Y , which can

differ by a multiple of 2πi.
Therefore, if we can compute the exponential and logarithm distribution of a complex random variable, we can

compute the product of any two complex random variables.
The proof of the following identities are detailed in the appendix, and relate to the multivariate transformation

method, see Theorem 2.14 of http://parker.ad.siu.edu/Olive/ich2.pdf.

4.2.2 Complex logarithm

Let Z = logX, we consider only one branch of the logarithm, i.e. Z = logX = log |X|+j argX with argX ∈]−π, π].
This means fZ = flogX is only defined on the band ]−∞,∞[+j]− π, π]. Then we have :

fZ(z) = fX(ez)|ez| = fX(ez)eℜ(z) (2)
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4.2.3 Complex exponential

Let Z = eX .
As opposed to the complex logarithm, which defines a bijective mapping between the complex plane to the

previously defined band, the exponential maps each horizontal band of width 2πi to the entire complex plane. This
means that the equation ez = x as an infinite number of solutions, all of the form z = log x+ 2kπi, for k ∈ Z.

This translates to the formula for the distribution of the exponential, where all solutions need to be ”folded” in
order to obtain the result :

fZ(z) =
∑
k∈Z

fX(log z + 2kπj)

|z|
(3)

However, we’ll see that in our case, to compute the product distribution, it won’t be necessary to compute this
sum as it is.

4.2.4 Product probability distribution

With these tools in hands, we can finally compute the actual product distribution for the complex random variable
:

fZ(z) =
∑
k∈Z

flogX+log Y (log z + 2kπj)

|z|

However, notice that the support of flogX+log Y is actually included in ]−∞,∞[+j]−2π, 2π], which means that
the summand is non-zero only for k ∈ {−1, 0, 1}. Thus we can limit the sum to these three values only :

fZ(z) =
∑

k∈{−1,0,1}

flogX+log Y (log z + 2kπj)

|z|
(4)

Thus giving a way to compute the product distribution, by first computing the logartithm distributions, then
summing them by convolution, and finally using this last formula for the result.

4.2.5 Link with logarithmic convolution

fZ(z) =
∑

k∈{−1,0,1}

(flogX ∗ flog Y )(log z + 2kπj)

|z|

=
∑

k∈{−1,0,1}

1

|z|

∫∫
|ℑ(t)|<π

flogX(log z + 2kπj − t)flog Y (t)dt

Needs a check on how to split the sum properly, however no matter how it cancels out anyway after and we
have :

fZ(z) =
1

|z|

∫∫
|ℑ(t)|<π

fX(elog z+2kπj−t)|elog z+2kπj−t|fY (et)|et|dt

=
1

|z|

∫∫
|ℑ(t)|<π

fX(ze−t)|ze−t|fY (et)|et|dt

=

∫∫
|ℑ(t)|<π

fX(ze−t)fY (e
t)dt

=

∫∫
|ℑ(t)|<π

sX(log z − t)sY (t)dt

= (sX ∗ sY )(log z)
= (fX ∗l fY )(z)

(5)

where sX(t) = fX(et) and sY (t) = fY (e
t). This is in fact the logarithmic convolution of fX and fY .
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See https://en.wikipedia.org/wiki/Logarithmic_convolution.
This is interesting to see that it could provide an efficient way to compute the product distribution for positive

real random variables. Otherwise, a formula is known of the product distribution of two real random variables X
and Y :

fXY (z) =

∫ ∞

−∞

1

|x|
fX(x)fY (

z

x
)dx (6)

https://en.wikipedia.org/wiki/Distribution_of_the_product_of_two_random_variables

4.3 Squared magnitude

For the following sections, let X and Y be real random variables. We are interested in the real random variable
Z = |X + iY |2 = X2 + Y 2.

We present two ways to compute the distribution of Z, the squared magnitude of the complex random variable
with real part and imaginary part X and Y . The first way involves directly computing the cumulative distribution
function, the second one by first computing the distribution of the squares, then summing them.

4.3.1 Square

The distribution of the square of a positive real random variable is given by :

fX2(x) =
fX(

√
x)

2
√
x

(7)

If the random variable is defined for all real numbers, then the distribution is :

fX2(x) =
fX(

√
x) + fX(−

√
x)

2
√
x

(8)

4.3.2 CDF : direct computation

FZ(z) =

∫ √
z

−
√
z

fY (y)

∫ √
z−y2

−
√

z−y2

fX(x)dxdy

=

∫ √
z

−
√
z

fY (y)(FX(
√

z − y2)− FX(−
√
z − y2))dy

(9)

Thus the pdf is :

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ √
z

−
√
z

fY (y)(FX(
√
z − y2)− FX(−

√
z − y2))dy (10)

4.3.3 As a sum of squares

fZ(z) = fX2+Y 2(z)

= (fX2 ∗ fY 2)(z)

=

∫ z

0

fX2(z − t)fY 2(t)dt

=

∫ √
z/2

0

(fX(u) + fX(−u))(fY (
√
z − u2) + fY (−

√
z − u2))√

z − u2

+
(fY (u) + fY (−u))(fX(

√
z − u2) + fX(−

√
z − u2))√

z − u2
du

(11)

Computing the convolution directly would be the fastest, but it’s not stable due to the potential singularity at
0 for the distribution of the squares. To compensate, we compute the last line of the formula, which is obtained
after a change of variable to avoid the singularities.
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A Proofs
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